
System Functions and their Types in Shen



absvector

 _

 Given a non-negative integer returns a vector in the native platform.

 absvector?

 A boolean

 Recognisor for native vectors.

 address->

 _

 Given an absolute vector A, a positive integer i and a value V places V

 in the A[i]th position.

<-address

 _

 Given an absolute vector A, a positive integer i retrieves V from the

 A[i]th position.

adjoin

 A (list A)  (list A)

 Conses an object to a list if it is not already an element..

and

 boolean boolean boolean

 Boolean and.

 append

 (list A) (list A)  (list A)

 Appends two lists into one list.

arity

 A number

 Given a Shen function, returns its arity otherwise -1.


 boolean?

 A boolean

 Recognisor for booleans.

 bound?

 symbol boolean

 Returns true if the variable is globally bound.

cd

 string  string

 Changes the home directory. (cd "Prog") causes (load "hello_world.txt") to load

 Prog/hello_world.txt. (cd "") is the default.

 close

 (stream A) (list B)
 Closes a stream returning the empty list.

cn

 string  string  string
 Concatenates two strings.



concat
 _

 Concatenates two symbols or booleans.

 cons

 _

 A special form that takes an object e of type A and a list l of type
 (list A) and produces a list of type (list A) by adding e to the front of l.

 cons?

 A  boolean
 Returns true iff the input is a non-empty list.



declare

 _
Takes a function name f and a type t expressed as a list and gives f the type t.

 define

 _

 Top level form for Shen definitions.

 defmacro

 _

 Top level form for Shen macros.

 defprolog

 _

 Top level form for Shen Prolog definitions.

destroy

 (A  B)  symbol

Receives the name of a function and removes it and its type from the environment.



difference

 (list A)  (list A)  (list A)
 Subtracts the elements of the second list from the first.

do

 A 
Returns its last argument; polyadic courtesy of the reader.



element?

A (list A)  boolean
 Returns true iff the first input is an element in the second.

 empty?

 A  boolean
 Returns true iff the input is [].

error

 _

A special form: takes a string followed by n (n  0) expressions. Prints error string.

error-to-string

 exception string
Maps an error message to the corresponding string.

 eval

 _

 Evaluates the input.

 eval-kl

 _

 Evaluates the input as a K expression.



explode

 A  (list string)
 Explodes an object to a list of strings.

external

 symbol  (list symbol)
 Given a package name, returns the list of symbols external to that package.

fix

 (A  A)  (A  A)
 Applies a function to generate a fixpoint.

freeze

 A  (lazy A)
 Returns a frozen version of its input.

fst

 (A * B)  A

 Returns the first element of a tuple.

function

(A   (A 
 Maps a symbol to the function which it denotes.

gensym

 symbol  symbol
Generates a fresh symbol or variable from a symbol.

get-time

symbol  number
 For the argument run or real returns a number representing the real or run time

 elapsed since the last call. One of these options must be supported. For the

 argument unix returns the Unix time.

 get

 _

takes a symbol S, a pointer P and optionally a vector V and returns the value in V pointed

by P from S (if one exists) or an error otherwise. If V is omitted the global property vector

is used.

 hash

 A  number  number
 Returns a hashing of the first argument subject to the restriction that the

 encoding must not be greater than the second argument.

 head

 (list A)  A
 Returns the first element of a list; if the list is empty returns an error

 hd

 (list A)  A
 Returns the first element of a list; if the list is empty returns an unspecified

 object



 hdstr

 string  string

 Returns the first element of a string.

 hdv

 (vector A)  A

 Returns the first element of a standard vector.

 if

 boolean A A A

takes a boolean b and two expressions x and y and evaluates x if b evaluates to true and

evaluates y if b evaluates to false.

implementation

  string

Returns a string denoting the implementation on which Shen is running (SBCL etc).

include

 (list symbol)  (list symbol)

Includes the datatype theories or synonyms for use in type checking.





include-all-but

 (list symbol)  (list symbol)
 Includes all loaded datatype theories and synonyms for use in type

 checking apart from those entered.



 inferences

 A number

The input is ignored. Returns the number of logical inferences executed since the last call to

the top level.

 input

 _

0-place function. Takes a user input i and returns the normal form of i.



 input+

 _

Special form. Takes inputs of the form : <expr>. Where d(<expr>) is the type denoted by

the choice of expression (e.g. ‘number’ denotes the type number). Takes a user input i and

returns the normal form of i given i is of the type d(<expr>).

integer?

 A boolean

 Recognisor for integers.

 intern

 _

 Maps a string to a symbol.

intersection

 (list A) (list A)  (list A)
 Computes the intersection of two lists.

 it

  string
Returns the last input to standard input embedded in a string.

 lambda

 _

 Builds a lambda expression from a variable and an expression.

 language

 string

 Returns a string denoting the language on which Shen is running.

 length

 (list A)  number

 Returns the number of elements in a list.

 

 limit

 (vector A)  number
 Returns the maximum index of a vector.

 lineread

 _

 Top level reader of read-evaluate-print loop. Reads elements into a list. lineread terminates
with carriage return when brackets are balanced. ^ aborts lineread.



 load

 string  symbol

 Takes a file name and loads the file, returning loaded as a symbol.



 macroexpand

 _

Expand an expression by the available macros.

 map

 (A  B) list  (list B)

The first input is applied to each member of the second input and the results consed into

one list.

 mapcan

 (A  (list B)) (list A)  (list B)

The first input is applied to each member of the second input and the results appended into
one list.



 make-string

 _

A special form: takes a string followed by n (n  0) well-typed expressions; assembles and

returns a string.



 maxinferences

 number number

Returns the input and as a side-effect, sets a global variable to a number that limits the

maximum number of inferences that can be expended on attempting to type check a

program. The default is 10
6
.

nl

 number  number

 Prints n new lines.



not

 boolean  boolean
 Boolean not.

nth

 number listA) A
 Gets the nth element of a list numbered from 1.



number?

 A boolean
 Recognisor for numbers.

n->string

 number  string
 Given a number n returns a unit string whose ASCII number is n.

 occurrences

 A  B  number
 Returns the number of times the first argument occurs in the second.

 occurs-check

 symbol  boolean
 Receives either + or - and enables/disables occur checking in Prolog,

 datatype definitions and rule closures. The default is +.

 open

 _
 Takes two arguments; the location from which it is drawn and the direction (in

 or out) and creates either a source or a sink stream.



or

 boolean  (boolean boolean)

 Boolean or.

os

  string

 Returns a string denoting the operating system on which Shen is running.

output

 _

A special form: takes a string followed by n (n  0) well-typed expressions; prints a

message to the screen and returns an object of type string (the string "done").

package

 _

Takes a symbol, a list of symbols and any number of expressions and places them in a

package.

package-exists?

 symbol boolean
 Returns true if the symbol names a package else returns false.



pos

 string  number  string

Given a string and a natural number n returns the nth unit string numbering from zero.

 

pr

 string  (stream out) string
 Takes a string, a sink object and prints the string to the sink, returning the string

 as a result. If no stream is supplied defaults to the standard output.



preclude

 (list symbol)  (list symbol)

Removes the mentioned datatype theories and synonyms from use in type checking.

preclude-all-but

 (list symbol)  (list symbol)

Removes all the datatype theories and synonyms from use in type checking apart from the

ones given.

print

 A  A

 Takes an object and prints it, returning it as a result.

profile

 (A  B)  (A  B)

Takes a function represented by a function name and inserts profiling code returning the

function as an output.

profile-results

 (A  B)  ((A  B) * number)

 Takes a profiled function f and returns the total run time expended on f since

 profile-results was last invoked..

ps

 _

 Receives a symbol denoting a Shen function and prints the Ksource
 code associated with the function.

 put

 _

3-place function that takes a symbol S, a pointer P (a string symbol or number), and an

expression E. The pointer P is set to point from S to the normal form of E which is then

returned.



read

 (stream in) unit
Takes a stream and reads off the first Shen token; defaults with zero arguments to standard

input.


read-byte

 (stream in) number
Takes a source and reads the first byte off it; defaults with zero arguments to standard input.

 

read-file

 string list unit)
Returns the contents of an ASCII file designated by a string. Returns a list of units, where

unit is an unspecified type.

read-file-as-bytelist

 string list number)
Returns the contents of an ASCII file designated by a string as a list of bytes.



read-file-as-string

 string string

Returns the string contents of an ASCII file designated by a string.

read-from-string

 string (list unit)

Reads a list of expressions from a string.



 remove

 A (list A) (list A)
 Removes all occurrences of an element from a list.

require

 symbol string symbol (list symbol)
 Takes the purported name of a package and a string and the argument weak or

 strong. If weak and the package does not exist, the file denoted by the string is

 loaded and the list of external symbols to the package is returned. If strong, the

 file is always loaded and the external symbols returned.



reverse

 (list A)(list A)

 Reverses a list.

simple-error

 string  A

 Given a string, raises it as an error message.

snd

 (A * B)  B

 Returns the second element of a tuple.

specialise

 symbol  symbol

 Receives the name of a function and turns it into a special form. Special forms

 are not curried during evaluation or compilation.

spy

 symbol  boolean

 Receives either + or – and respectively enables/disables tracing the

 operation of T*.

 step

 symbol  boolean
 Receives either + or – and enables/disables stepping in the trace.

 stinput

  (stream in)
 Returns the standard input stream.

 stoutput

  (stream out)
 Returns the standard output stream.

str

 A string
Given an atom (boolean, symbol, string, number) flanks it in quotes. For other inputs an

error may be returned.


string?

 A boolean
 Recognisor for strings.

string->n

 string number
 Maps a unti string to its code point.

subst

 _

 Given (subst x y z) replaces y by x in z where z is a list or an atom.


sum

 (list number) number

 Sums a list of numbers.

symbol?

 A boolean

 Recognisor for symbols.

 systemf

 symbol  (list symbol)

 Gives the symbol the status of an identifier for a system function; its definition

 may not be overwritten. Returns the list of symbols with this status.

 tail

 (list A)  (list A)

 Returns all but the first element of a non-empty list.


 tc

 symbol  boolean

Receives either + or – and respectively enables/disables static typing.

 tc?

 A  boolean
Returns true iff typechecking is enabled.

 thaw

 (lazy A)  A
 Receives a frozen input and evaluates it to get the unthawed result..

 time

 _

 Prints the run time for the evaluation of its input and returns its normal form.

 tl

 _

 Returns the tail of a list; for [] the result is platform dependent.



 tlstr

 string  string

 Returns the tail of a string.

 tlv

 (vector A)  (vector A)

 Returns the tail of a non-empty vector.



 track

 symbol  symbol
 Tracks the I/O behaviour of a function.

 trap-error

 A  (exception  A)  A
 Tracks the I/O behaviour of a function.



 tuple?

 A  boolean

 Recognisor for tuples.

 type
 _

 Used under type checking; takes an expression e and a type A; e is

 evaluated only if e inhabits A.

 undefmacro

 symbol symbol
 Removes a macro.

 union

 (list A) (list A)  (list A)
 Forms the union of two lists.

unprofile

 (A  B)  (A  B)
 Unprofiles a function.

unspecialise

 symbol  symbol
Receives the name of a function and deletes its special form status.

 untrack

 symbol  symbol
 Untracks a function.

 value

 _

 Applied to a symbol, returns the global value assigned to it.

 variable?

 A  boolean

 Applied to a variable, returns true.

 version

 string  string

 Changes the version string displayed on startup.

 vector

 number  (vector A)

 Creates a vector of size n.

 vector?

A  boolean

Recognises a standard vector.

 vector->

 (vector A)  number  A  (vector A)

 Given a vector V and an index i and object o, assigns o to V[i].

 <-vector

 (vector A)  number  A

 Given a vector V and an index i and object o, assigns o to V[i].

 vector?

 A  boolean

 Recognisor for standard vectors.



 write-byte

 number  (stream out)  number
 Takes a byte as an integer n between 0 and 255 and writes the corresponding

 byte to the stream returning n.



 write-to-file

 string A  A
Writes the second input into a file named in the first input. If the file does not exist, it is

created, else it is overwritten. If the second input is a string then it is written to the file

without the enclosing quotes. The second input is returned.

 y-or-n?

 string  boolean

Prints the string as a question and returns true for y and false for n.



 @p

 _

 Takes n (n > 1) inputs and forms the tuple.

 @s
 _

 Takes n (n > 1) strings and forms their concatenation

 @v

 _

 Takes n inputs, the last being a vector V and forms a vector of these elements appended to

the front of V.



 $

 _

 Used by the reader; the argument is read in as an exploded list of unit

 strings.

.

 +

 number number  number

 Number addition.



 number number  number

 Number subtraction.

 *

 number number  number

 Number multiplication.

 /

 number number  number

 Number division.



 /.

 _

Abstraction builder, receives n variables and an expression; does the job of a (nested)  in the
lambda calculus.

 >

number number  boolean
 Greater than.

 <

number number  boolean
 Less than.



 =

 A A  boolean

 Equal to.



 = =

A B  boolean
 Equal to.

 >=

number number  boolean
 Greater than or equal to.

 <=

number number  boolean
 Less than or equal to.

